多线程与高并发(四)
线程池
Executor
执行者, 有一个方法 execute().
ExecutorService
继承自Executor, 也是一个接口.
除了execute()方法之外, 还完善了整个任务执行器的生命周期.
shutdown() 结束,
shutdownNow() 立刻结束,
isShutdown()是否已经结束
isTerminated()是否已经执行完了
awaitTermination(long timeout, TimeUnit unit)等待xx时间
Callable&Future
除此之外, ExecutorService中还有一个Future
在java1.5的时候添加了一个叫Callable的接口, 为了解决Runnable没有返回值的情况.
同时还添加了一个Future接口, 在Callable执行完之后, 结果会封装到Future中.
public static void main(String[] args) throws ExecutionException, InterruptedException {
Callable<String> call = new Callable(){
@Override
public String call() throws Exception {
return "Hello Callable";
}
};
ExecutorService service = Executors.newCachedThreadPool();
Future<String> future = service.submit(call);
// future.get() 方法是阻塞的,阻塞直到获取到线程的返回值
System.out.println(future.get());
service.shutdown();
}
还有一个类叫做FutureTask, 他可以既当Future又当Task.
public static void main(String[] args) throws ExecutionException, InterruptedException {
FutureTask<Integer> task = new FutureTask<>(() -> {
TimeUnit.MILLISECONDS.sleep(200);
return 1000;
});
new Thread(task).start();
System.out.println(task.get());
}
在FutureTask类中, 实现了RunnableFuture接口, 而Runnable接口又继承了Runnable和Future.
CompletableFuture
CompletableFuture可以用来管理多个Future.
public class Test03 {
public static void main(String[] args) {
CompletableFuture<Double> futureTB = CompletableFuture.supplyAsync(() -> priceOfTB());
CompletableFuture<Double> futureJD = CompletableFuture.supplyAsync(() -> priceOfJD());
CompletableFuture<Double> futurePDD = CompletableFuture.supplyAsync(() -> priceOfPDD());
CompletableFuture.allOf(futureTB, futureJD, futurePDD).join();
}
public static double priceOfTB() {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
return 1.0;
}
public static double priceOfJD() {
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
return 2.0;
}
public static double priceOfPDD() {
try {
Thread.sleep(300);
} catch (InterruptedException e) {
e.printStackTrace();
}
return 3.0;
}
}
比如以上例子就是使用CompletableFuture来使多个Future都完成才继续.
也可以使用他的其他方法对返回值进行操作.
ThreadPoolExecutor
ThreadPoolExecutor是继承自AbstractExecutorService, 这是一个抽象类, 实现了ExecutorService接口.
在阿里代码规约中是禁止手动new Thread来开启多线程的, 也禁止使用Executors来创建线程池.
推荐的方法是使用ThreadPoolExecutor来手动创建一个线程池.
ThreadPoolExecutor的构造方法有七大参数
ThreadPoolExecutor tpe = new ThreadPoolExecutor(
// 核心线程数
2,
// 最大线程数
4,
// 生存时间
60,
//生存时间单位
TimeUnit.SECONDS,
// 任务队列
new ArrayBlockingQueue<>(4),
// 线程工厂
Executors.defaultThreadFactory(),
// 拒绝策略
new ThreadPoolExecutor.DiscardOldestPolicy());
- 核心线程数
- 线程池一创建出来就会有一些核心线程
- 最大线程数
- 当任务处理不过来, 线程池能扩展到的最大线程数
- 生存时间
- 线程如果长时间不工作, 就会将线程关闭
- 生存时间单位
- 任务队列
- 阻塞队列 可以放入各种各样的BlockingQueue
- 线程工厂
- 传入一个ThreadFactory 可以设置ThreadFactory生产线程的名字
- 线程的名字非常重要, 如果线程没有自定义名字, 当发现线程出问题的之后, 面对 pool-1-thread-1这种名字无从寻找问题.
- 拒绝策略
- 当线程池中的线程都在忙, 阻塞队列满了, 而且线程池已经到达最大线程数的时候, 就会启动拒绝策略.
- JDK提供了默认四种拒绝策略. 也可以自定义.
- AbortPolicy 抛异常
- DiscardPolicy 扔掉, 不抛异常
- DiscardOldestPolicy 扔掉排队时间最久的
- CallerRunsPolicy 调用者处理
线程池工厂 Executors
Executors可以说是线程池的工厂, 是用来产生线程池的.
newSingleThreadExecutor()
public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } public LinkedBlockingQueue() { this(Integer.MAX_VALUE); }
创建一个只有一个线程的线程池, 为什么要有这种一个线程的线程池? 只想要一个线程直接new Thread不就行了吗 ?
线程池中不光有线程, 还维护了任务队列, 如果自己new Thread就要自己维护这个任务队列. 而且线程池还可以维护生命周期.
但是, 这个线程池是有问题的, 他的线程任务队列是LinkedBlockingQueue, 默认给的最大长度是Integer.MAX_VALUE. 这是一个非常危险的行为, 如果线程处理不过来, 导致任务越积越多, 可能会导致任务队列真的存放这么多任务最终导致OOM.
newCachedThreadPool()
public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); }
从参数中可以看出来, cachedThreadPool核心线程数是0, 最大线程数是Integer.MAX_VALUE, 而且任务队列是0.
如果线程池中没有空闲线程, 就会起一个新的线程来执行这个任务.
这显然也是有问题的, 如果同时大量的任务打过来很有可能会导致开启过多线程.而过多的线程可能会导致CPU的资源都耗费在线程切换上了.
newFixedThreadPool(int nThreads)
public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); }
创建一个固定线程数的线程池, 这个线程池和SingleThreadExecutor的问题一样, 都是任务队列太长, 可能会导致OOM.
newScheduledThreadPool(int corePoolSize)
public ScheduledThreadPoolExecutor(int corePoolSize) { super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS, new DelayedWorkQueue()); }
定时器任务, 这个线程池和cachedThreadPool的问题是一样的, 最大线程数量太大.
并行和并发
并发: concurrent
并行: parallel
并发指任务提交, 并行指任务执行.
并行是并发的子集.
ThreadPoolExecutor源码解析
1、常用变量的解释
// 1. `ctl`,可以看做一个int类型的数字,高3位表示线程池状态,低29位表示worker数量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// 2. `COUNT_BITS`,`Integer.SIZE`为32,所以`COUNT_BITS`为29
private static final int COUNT_BITS = Integer.SIZE - 3;
// 3. `CAPACITY`,线程池允许的最大线程数。1左移29位,然后减1,即为 2^29 - 1
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
// 4. 线程池有5种状态,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
// 5. `runStateOf()`,获取线程池状态,通过按位与操作,低29位将全部变成0
private static int runStateOf(int c) { return c & ~CAPACITY; }
// 6. `workerCountOf()`,获取线程池worker数量,通过按位与操作,高3位将全部变成0
private static int workerCountOf(int c) { return c & CAPACITY; }
// 7. `ctlOf()`,根据线程池状态和线程池worker数量,生成ctl值
private static int ctlOf(int rs, int wc) { return rs | wc; }
/*
* Bit field accessors that don't require unpacking ctl.
* These depend on the bit layout and on workerCount being never negative.
*/
// 8. `runStateLessThan()`,线程池状态小于xx
private static boolean runStateLessThan(int c, int s) {
return c < s;
}
// 9. `runStateAtLeast()`,线程池状态大于等于xx
private static boolean runStateAtLeast(int c, int s) {
return c >= s;
}
2、构造方法
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
// 基本类型参数校验
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
// 空指针校验
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
// 根据传入参数`unit`和`keepAliveTime`,将存活时间转换为纳秒存到变量`keepAliveTime `中
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
3、提交执行task的过程
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
// worker数量比核心线程数小,直接创建worker执行任务
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
// worker数量超过核心线程数,任务直接进入队列
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// 线程池状态不是RUNNING状态,说明执行过shutdown命令,需要对新加入的任务执行reject()操作。
// 这儿为什么需要recheck,是因为任务入队列前后,线程池的状态可能会发生变化。
if (! isRunning(recheck) && remove(command))
reject(command);
// 这儿为什么需要判断0值,主要是在线程池构造方法中,核心线程数允许为0
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 如果线程池不是运行状态,或者任务进入队列失败,则尝试创建worker执行任务。
// 这儿有3点需要注意:
// 1. 线程池不是运行状态时,addWorker内部会判断线程池状态
// 2. addWorker第2个参数表示是否创建核心线程
// 3. addWorker返回false,则说明任务执行失败,需要执行reject操作
else if (!addWorker(command, false))
reject(command);
}
4、addworker源码解析
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
// 外层自旋
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// 这个条件写得比较难懂,我对其进行了调整,和下面的条件等价
// (rs > SHUTDOWN) ||
// (rs == SHUTDOWN && firstTask != null) ||
// (rs == SHUTDOWN && workQueue.isEmpty())
// 1. 线程池状态大于SHUTDOWN时,直接返回false
// 2. 线程池状态等于SHUTDOWN,且firstTask不为null,直接返回false
// 3. 线程池状态等于SHUTDOWN,且队列为空,直接返回false
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
// 内层自旋
for (;;) {
int wc = workerCountOf(c);
// worker数量超过容量,直接返回false
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// 使用CAS的方式增加worker数量。
// 若增加成功,则直接跳出外层循环进入到第二部分
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
// 线程池状态发生变化,对外层循环进行自旋
if (runStateOf(c) != rs)
continue retry;
// 其他情况,直接内层循环进行自旋即可
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
// worker的添加必须是串行的,因此需要加锁
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
// 这儿需要重新检查线程池状态
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
// worker已经调用过了start()方法,则不再创建worker
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// worker创建并添加到workers成功
workers.add(w);
// 更新`largestPoolSize`变量
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
// 启动worker线程
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
// worker线程启动失败,说明线程池状态发生了变化(关闭操作被执行),需要进行shutdown相关操作
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
5、线程池worker任务单元
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
// 这儿是Worker的关键所在,使用了线程工厂创建了一个线程。传入的参数为当前worker
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
// 省略代码...
}
6、核心线程执行逻辑-runworker
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
// 调用unlock()是为了让外部可以中断
w.unlock(); // allow interrupts
// 这个变量用于判断是否进入过自旋(while循环)
boolean completedAbruptly = true;
try {
// 这儿是自旋
// 1. 如果firstTask不为null,则执行firstTask;
// 2. 如果firstTask为null,则调用getTask()从队列获取任务。
// 3. 阻塞队列的特性就是:当队列为空时,当前线程会被阻塞等待
while (task != null || (task = getTask()) != null) {
// 这儿对worker进行加锁,是为了达到下面的目的
// 1. 降低锁范围,提升性能
// 2. 保证每个worker执行的任务是串行的
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
// 如果线程池正在停止,则对当前线程进行中断操作
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
// 执行任务,且在执行前后通过`beforeExecute()`和`afterExecute()`来扩展其功能。
// 这两个方法在当前类里面为空实现。
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
// 帮助gc
task = null;
// 已完成任务数加一
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
// 自旋操作被退出,说明线程池正在结束
processWorkerExit(w, completedAbruptly);
}
}
WorkStealingPool
public static ExecutorService newWorkStealingPool() {
return new ForkJoinPool
(Runtime.getRuntime().availableProcessors(),
ForkJoinPool.defaultForkJoinWorkerThreadFactory,
null, true);
}
WorkStealingPool和原来的区别就是, 每个线程都有自己单独的队列. 当某个线程执行完自己的任务时, 会去其他线程的队列中偷一个任务.
而原本的线程池都是ThreadPoolExecutor, WorkStealingPool是ForkJoinPool.
ForkJoinPool
ForkJoinPool适合做把一个大任务切分成一个个小任务, 小任务执行完的结果再汇总.
因为任务需要可以进行切分, 所以要求任务继承ForkJoinTask. 我们可以使用ForkJoinTask的子类RecursiveTask和RecursiveAction.
public class Test05 {
static int[] nums = new int[1000000];
static final int MAX_NUM = 50000;
static Random random = new Random();
static {
for (int i = 0; i < nums.length; i++) {
nums[i] = random.nextInt();
}
System.out.println("single calculate sum : " + Arrays.stream(nums).sum());
}
static class AddTask extends RecursiveTask<Long> {
int start;
int end;
public AddTask(int start, int end){
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
if (end - start <= MAX_NUM){
long sum = 0;
for (int i = start; i < end; i++) {
sum += nums[i];
}
return sum;
}else {
int middle = start + (end - start) / 2;
AddTask subTask1 = new AddTask(start, middle);
AddTask subTask2 = new AddTask(middle, end);
subTask1.fork();
subTask2.fork();
return subTask1.join() + subTask2.join();
}
}
}
// static class AddTask extends RecursiveAction {
//
// int start;
// int end;
//
// public AddTask(int start, int end){
// this.start = start;
// this.end = end;
// }
//
// @Override
// protected void compute() {
// if (end - start <= MAX_NUM){
// long sum = 0;
// for (int i = start; i <= end; i++) {
// sum += i;
// }
// System.out.println("from : " + start + " to : " + end + " sum = " + sum);
// }else {
// int middle = start + (end - start) / 2;
//
// AddTask subTask1 = new AddTask(start, middle);
// AddTask subTask2 = new AddTask(middle + 1, end);
// subTask1.fork();
// subTask2.fork();
// }
// }
// }
public static void main(String[] args) throws IOException {
ForkJoinPool fjp = new ForkJoinPool();
AddTask task = new AddTask(0, nums.length);
fjp.execute(task);
System.out.println(task.join());
System.in.read();
}
}
ParallelStream
ParallelStream也是使用ForkJoinPool的一个Stream.
Disruptor
单机性能最好的MQ
Disruptor的特点
无锁, 高并发, 使用环形Buffer, 直接覆盖(不用清除)旧的数据, 降低GC频率
实现了基于时间的生产者消费者模式(观察者模式)